
Preprint ANL/MCS-P1573-0109, Math and Comp. Sci. Division, Argonne Natl. Lab.

CANONICAL NUMBERING SYSTEMS FOR FINITE-ELEMENT CODES

Timothy J. Tautges

Argonne National Laboratory, Argonne, IL tautges@mcs.anl.gov

ABSTRACT

Canonical numbering systems are used to relate finite-element vertices and elements to edges
and faces in those elements. A numbering system is proposed that treats all the major topological
element types used in practice. Also described is a set of functions that provide common
evaluations of the canonical numbering data. Examples from various parts of the finite-element
analysis process are used to show the usefulness of these functions. The differences between
various numbering systems used in commercial and research codes and our numbering system
are described. The implementation of these functions is available as open-source software and
can be called directly from the C, C++, and Fortran languages.

1. INTRODUCTION

Scientific computing has been profoundly changed by software components, most clearly in
areas such as numerical linear algebra solvers [BAL04] and mesh partitioning [MET08], but
elsewhere as well. The shift to component-based computing has enabled the rapid incorporation
of the latest technology into applications (i.e., “vertical” integration) and has simplified
exploration of available components for a given technology to allow selection of the one most
suitable for the application (i.e., “horizontal” integration). Following this trend, components are
now being developed for mesh generation and other mesh-based enabling technologies
[ITA08,TAU04]. We expect similar gains in functionality and sophistication of applications
based on these new mesh-based components.

Applications and mesh-based components using mesh data must have a common understanding
of the mesh in order to work correctly. For example, the ordering of vertices in an element is
important in uniquely describing that element. Figure 1 shows two possible numberings of
vertices in a tetrahedron.

If the element volume is defined in an application as the vector triple product,

() 030201 ⋅x=V

2

then one of the numberings will generate a positive volume for this element, while the other will
result in a negative volume. Applications must either use a common numbering system when
evaluating the mesh or at least know how to translate between various numbering systems if
several are used. Although there is wide agreement on the basic element types in the finite
element “zoo” (e.g., nodes, triangles, hexahedra), differences in the numbering definitions
present barriers to interoperability between components using these data. Enumerating the
numbering differences between common numbering systems, as well as facilitating the
translation between the various systems, would improve interoperability and contribute to the
deployment of mesh-based components.

This paper defines a canonical numbering system, referred to as MBCN (MoaB Canonical
Numbering), that is comprehensive, covering most known element types used in practice, while
also being extensible to new element types. Convenience functions are described that depend on,
but are not strictly part of, a minimal numbering definition. Such functions often are
implemented in mesh-based applications, but in a form that usually does not fully support a
complete set of element types. A functional interface for accessing the numbering definition is
described, along with an implementation that can be accessed from C, C++, and Fortran
applications. Mappings between the numbering system proposed here and several other popular
numbering systems, including those used in PATRAN [PAT08], ExodusII [SCH92], and Ansys
[ANS98], are also described. These functions have been released under the open source LGPL
license and are available for download from the web [MOA08].

Figure 1: Two different numberings for a tetrahedron.

The Interoperable Tools for Advanced Petascale Simulations (ITAPS) project develops
interfaces to geometry, mesh, and field data and services based on these interfaces [ITA08]. The
ITAPS mesh interface, referred to as iMesh, uses a set of entity types similar, but not identical, to
those defined in MBCN. The Mesh-Oriented datABase library (MOAB) implements the iMesh
interface specification and is tuned for minimal memory use first and execution time second
[TAU04]. The entity types treated by both MOAB and MBCN are identical. ITAPS references
the work described in this paper for its canonical numbering, with MBCN’s set of entity types
being a superset of those defined by iMesh. Because MBCN defines entities not treated by
iMesh, and because of other small differences (e.g., MBCN’s defining an “entity set” as an entity
type and its handling of higher-order nodes in quadratic elements), MBCN is reported separately
from iMesh.

In Section 2 we describe the canonical numbering system used in MBCN. In Section 3, we
describe some higher-level functions for evaluating canonical numbering and show how such
functions are often used implicitly in codes that evaluate the mesh. The implementation of
MBCN minimizes the actual data used to describe the numbering system, thereby minimizing the

1

2

3

0

1

2

3

0

3

chances of consistency errors and simplifying the inclusion of different element types; this
implementation is described in Section 4. Also described are MBCN functions for translation
between various systems using permutation vectors. A functional interface specification for
MBCN is given in Appendix A. The MBCN numbering system is related to other popular
numbering systems, including those used in Ansys and Sandia’s ExodusII format, in Appendix
B.

2. MBCN NUMBERING SYSTEM DEFINITION

We divide the definition of our canonical numbering system into several logical parts. First, the
types of elements supported by the system are enumerated. Next, the numbering of vertices,
edges, and faces in each element is defined. Third, the process for numbering so-called higher-
order vertices in quadratic elements is defined.

2.1. MBCN ELEMENT ZOO

The finite-element zoo treated by MBCN is shown in Figure 2. This set includes all of the
commonly used elements in finite-element analysis, including triangles, quadrilaterals,
tetrahedra, and hexahedra. The set also includes some of the less common elements, including
wedges (also referred to as triangular prisms) and pyramids. Because these elements are less
common, the numbering systems used to describe them often vary. By including them in our
system, we hope to popularize a numbering convention for these elements. Some special-purpose
elements also are included in our system (e.g., the “knife” element [MOA08]), for the same
reasons. Additionally, our enumeration of element types includes some types not traditionally
found in the finite element zoo, including polygon, polyhedron, and entity set. We have included
these types in the enumeration for convenience, noting that iteration is often done over all
element types, not only those that have a defined numbering (for more information, see
[MOA08]).

0

POINT

0 1

LINE

1

2

3

0

TETRAHEDRON

2

1

4

0

3

PYRAMID

0 1

2 3

QUADRILATERAL

0 1

2
4 3

5

WEDGE
0 1

2

6

4

5

3

KNIFE

0 1

2

TRIANGLE

0 1

2

6 7

4 5
3

HEXAHEDRON

4

Figure 2: Vertex numbering for finite-element zoo treated in MBCN.

Besides containing an enumeration of the types defined there, MBCN has functions that return a
string name for a given type and the type given a string name. Full specifications for these
functions are given in Appendix A.

2.2. VERTEX, EDGE, AND FACE NUMBERING

A complete vertex numbering definition for these elements is shown in Figure 2. Edge and face
numberings are shown in Figure 3 and Figure 4, respectively. One point to note is that all vertex,
edge, and face numbers within each element are contiguous and begin with zero.

Figure 3: Edge numbering for finite-element zoo treated in MBCN.

Faces and edges bounding elements of higher topological dimension are referred to as “facets” of
those elements; vertices can also be considered facets, although they are not strictly included in
that definition in the topology literature. MBCN has functions that return the number of facets of
each dimension d < D, for elements of dimension D. MBCN also has functionality to convert the
base of the numbering system from zero to one. See Appendix A for details.

0 1

LINE

1

2

3

0

TETRAHEDRON

2

1

4

0

3

PYRAMID

0 1

2 3

QUADRILATERAL

0 1

2
4 3

5

WEDGE
0 1

2

6

4

5

3

KNIFE

0 1

2

TRIANGLE

0 1

2

6 7

4 5
3

HEXAHEDRON

1

0

6

10

9 11 7

4
2

5 3
8

0

7
2
1

8
9

6
5

4
3

5
6

1
0

2 3 4

7 8
7

1

6

0

2
5

4
3

0 1

5 3
4

2 1 3

2

0 0

1 2 0

5

Figure 4: Face numbering for finite-element zoo treated in MBCN.

2.3. HIGHER-ORDER ELEMENTS

In its most general form, the finite element method can use a variety of shape function types of
arbitrary order. In practice, however, the majority of finite-element analysis codes, especially in
the solid mechanics community, use linear or quadratic shape functions. From the viewpoint of
the mesh, quadratic shape functions are supported by adding degrees of freedom to some or all of
the lower-dimensional facets and to the element itself, one for every order beyond linear. The
two most common methods for representing these degrees of freedom are as attributes assigned
directly to those facets or as “higher-order” vertices associated indirectly with the facets they
resolve. The former representation is more general, allowing each facet to have an arbitrary
number of degrees of freedom. It is also more costly, however, in terms of memory, since lower-
dimensional facets must be explicitly represented [BEA97]. In cases where all facets of a given
topological dimension have the same number of degrees of freedom, the second method is easily
represented by concatenating higher-order vertices to the list of corner vertices. This method is
used by the majority of numbering systems reviewed in this paper (see Appendix B).

In many cases, some but not all lower dimensions are resolved by extra degrees of freedom. For
example, the widely used 10-vertex tetrahedron has mid-edge as well as corner vertices, but not
mid-face vertices. If a flag hd is used to specify whether facets of dimension d are resolved with
higher-order vertices, and nd is the number of facets of dimension d, then the total number of
vertices in an element of dimension D is given by

 (we assume n0 is the number of corner vertices; h0 is always unity). For example, for a 10-vertex
tetrahedron with corner and mid-edge vertices, h is [1, 1, 0, 0], n is [4, 6, 4, 1], and N = 4 + 6 =

4By definition, the MBEntityType enumeration begins with the value of zero for MBVERTEX and ends with the
value MBMAXTYPE value.

3

2

1

2

3

0

TETRAHEDRON

2

1

4

0

3

PYRAMID

0 1

2 3

QUADRILATERAL

0 1

2
4 3

5

WEDGE
0 1

2

6

4

5

3

KNIFE

0 1

2

TRIANGLE

0 1

2

6 7

4 5
3

HEXAHEDRON

1
0

5 2

4

3
2

1 3

4
0 0

12

4

34
0

1
2 3

0
1 0

0

∑
=

=
D

d
dd nhN

0

6

10. Similarly, a hexahedron with higher-order vertices resolving the edges and the element itself
would have h = [1, 1, 0, 1], n = [8, 12, 6, 1] and N = 21. One subtle aspect of this numbering
approach is that the index of a higher-order vertex may have different values depending on
which facet dimensions of an element are resolved with higher-order vertices. For example, the
index of the vertex resolving the interior of the hexahedron would change from 20 to 26 if h were
changed to [1, 1, 1, 1] (assuming a zero-based numbering system). Thus, a “canonical” ordering
for higher-order vertices depends on which facet dimensions are resolved in a higher-order
element.

All possible combinations of hd for a given dimension, along with the topology of a given
element type, can be used to enumerate the possible total number of vertices for that element. If
these numbers are unique for a given element, then hd can be inferred given the element type and
the total number of (corner and higher-order) vertices N. Going the other way, hd and N can be
used to find the index and dimension of facet resolved by vertex I. Both operations are common
in meshing applications.

Functions performing these types of evaluations are described further in Appendix A.

3. FUNCTION INTERFACE TO CANONICAL NUMBERING DATA

MBCN is implemented as a C++ class and does not depend on the rest of MOAB; therefore, it
can be incorporated as-is into applications if desired. Building MBCN requires files generated
from the Automake-based MOAB build process, although this would be easy to adapt to an
application's build system. Most functions in MBCN are implemented as inline functions, with
basic numbering data stored in fixed-size static arrays. Thus, calls to MBCN are efficient in run-
time.
MBCN also provides wrapper functions that can be called from C and Fortran; these functions
use a slightly different syntax from that of the MBCN class functions. Wrapper functions have
“MBCN_” prepended to the function name. These functions are all declared with void type;
those corresponding to MBCN class functions that return non-void values have an extra
argument of that type in their C/Fortran counterpart. Default arguments always appear in the
argument list of wrapper functions. Moreover, any C++ data structures not found in C/Fortran
(e.g., Standard Template Library vectors std::vector< >) are passed as an array and a size in the
wrapper functions. Other details of the C-Fortran interface can be found in the MBCN header
file.
There are basic functions needed to access the data shown in Figures 2– 4; these functions are
described in the following subsection. Convenience functions can also be defined, which depend
on the basic functions but provide higher-level functionality (e.g., adjacency evaluation) in terms
of canonical numbering data. These functions are described following the basic functions. In
both cases, only a qualitative description is given here, with more complete descriptions
provided in Appendix A.

3.1. BASIC CANONICAL NUMBERING FUNCTIONS

The following functions give information about the entity types defined by MBCN.

7

• MBEntityType: Denotes entity types. Arguments of this type are input to most of the
other MBCN functions. The types used by MBCN are those shown in Figure 2, along
with MBENTITYSET and MBMAXTYPE.

• EntityTypeName(t): Returns a constant character string representing the name of type t.

• Dimension(t): Returns the topological dimension of this entity type.

The following functions return information about the intrinsic numbering data for entities, that is,
the numbering data that cannot be derived from other numbering information for an entity:

• VerticesPerEntity(t): The number of corner vertices for entities of type t.

• NumSubEntities(t, d): The number of bounding facets of dimension d for entities of
type t.

• SubEntityType(t, d): The type of bounding facet of dimension d for entities of type t;
for d != 2, the returned type will always be the same (MBEDGE for d = 1, MBVERTEX
for d = 0, and t for d = Dimension(t)); for d = 2, some entity types (e.g., MBPRISM) have
facets of more than one type.

• SubEntityConn(t, d, n, ...): The connectivity of the nth facet of dimension d bounding an
entity of type t. Connectivity is returned in terms of the corner vertex numbers of the
entity of type t.

These functions are sufficient for describing the entities shown in Figures 2-4. Existing
applications usually have some version of this information already implemented, at least for the
types of elements they currently use. New applications could use these functions instead of
implementing them themselves.

3.2. HIGHER-LEVEL CONVENIENCE FUNCTIONS

The fundamental data in a canonical numbering definition is accessed by using the functions
described above. In addition to those data and functions, however, certain higher-level
functionality that depends on canonical numbering is also commonly implemented in mesh-
based applications. MBCN provides some of these functions, which apply to all treated element
types, in contrast to the more limited implementations commonly found in applications.
Examples of such functionality are discussed in this section.

Facet Adjacencies

Many codes represent elements by using only an array of the vertices defining the element, but
need information about facets of these elements. For example, a code might need to find the
vertices common to two faces in the element. The AdjacentSides function evaluates adjacencies
based on canonical numbering data, returning the results in terms of those same data.

int AdjacentSides(const MBEntityType t, const int *i, const int num_i,

 const int source_dim, const int target_dim,

 std::vector<int> &index_list,

8

 const int operation_type = MBCN::INTERSECT)

Given an entity type t, a vector of facet indices (i) of specified dimension (source_dim), and the
target dimension, this function returns the indices of facets of that target dimension shared by the
source facets. If operation_type is specified as UNION instead of INTERSECT, any target facets
adjacent to the source facets are included in the output list. Note that this function can traverse
upward or downward in dimension; for example, this function can be used to find the faces
sharing a given edge or the vertices common to two faces.

The following is the equivalent function in the C/Fortran wrapper.

void MBCN_AdjacentSides(int t, int *i, int num_i,

 int source_dim, int target_dim,

 int *index_list, int index_list_size,

 int operation_type, int *num_sides_returned)

Example usages of the AdjacentSides function, used in various places in MOAB, include the
following.

• Find the vertex indices defining a specified facet of an element (some mesh formats, e.g.,
Ansys, can specify element facets in terms of the vertices defining those facets).

AdjacentSides(t, &side_no, 1, side_dim, 0, side_vertices)

• Find all edges shared by the faces in face_list.

AdjacentSides(t, face_list, num_faces, 2, 1, common_edges)

• Find all faces sharing the apex node of a pyramid.

AdjacentSides(MBPYRAMID, &int(4), 1, 0, 2, sharing_faces, MBCN::UNION)

Translation of Facet Connectivity to Facet Index

Many mesh generation codes represent boundary conditions by using the geometric model
entities, while the mesh storage format calls for boundary condition data in terms of “sides”, or
local facet indices in an element. For example, the Exodus [SCH92] format stores Neumann-type
boundary conditions as “sidesets,” which are a collection of pairs of elements and facet numbers.
In these cases the code must find the facet number given that facet and the element it bounds. For
this purpose, the following function is provided in MBCN:

int SideNumber(const X *parent_conn, const MBEntityType parent_type,

 const X *facet_conn, const int facet_num_verts,

 const int facet_dim, &side_number, int &sense, int &offset)

9

This function takes connectivity in generic form; in the actual implementation, several versions
of this function are overloaded with the same name and vary according to the data type of the
arguments. In addition to returning the facet number, the sense of the facet (i.e., the normal
indicated by the order of vertices in facet_conn compared to that of the facet in the canonical
ordering in parent_conn) and the offset of the start of facet_conn compared to that of the
canonical ordering data are also returned. Returning these items incurs no cost inside the
implementation because the items are computed as part of finding the facet number.

For example, the facet number of a quadrilateral with vertices in face_connect in a hexahedron
whose vertices are in hex_connect can be found by calling the following.

SideNumber(hex_connect, MBHEX, face_connect, 4, 2, side, sense, offset)

Higher-Order Vertex Indexing

As discussed in Section 2.3, a common operation is to find the facet resolving a vertex, given the
element type and the total number of vertices; this operation is performed by the function

void HONodeParent(const MBEntityType elem_type,

 const int num_verts, const int ho_vert_index,

 int &parent_dim, int &parent_index)

where the dimension and index of the resolved facet are returned in the parent_dim and
parent_index arguments, respectively.

Permutations and Relation to Other Numbering Systems

In order to maximize compatibility with other codes, the canonical numbering system defined by
MBCN corresponds to the PATRAN numbering system [PAT08] in most cases. However,
MBCN supports several element types not supported by PATRAN; in those cases, if a
corresponding element type is available in ExodusII [SCH92], that definition is used. Otherwise,
MBCN defines its own numbering.

Besides being useful for implementation of various functionality within a mesh application,
canonical numbering information is useful for translating mesh between various mesh storage
formats. Using the correct ordering for the originating and destination formats is critical for
obtaining valid mesh definitions on each side of the translation. Canonical numbering can be
translated by using a vector to permute the data from MBCN’s numbering system to the target
system, or vice versa. MBCN allows applications to define permutation vectors based on entity
type, facet dimension, and number of entities of that dimension and to permute index lists based
on those vectors. The following functions are provided for this purpose.

• setPermutation(t, d, ilist, n, f), resetPermutation(t, d): sets and resets the permutation
vector for entities of type t, facet dimension d, and number of sub facets n, to the vector
in ilist. If f is non zero, ilist contains the reverse-permutation vector. n is provided to
allow setting vertex numbering for higher-order elements, where the number of vertices
depends on the particular kind of element (see Section 2.3).

10

• permuteThis(t, d, conn, ni, ne), revPermuteThis(t, d, ilist, ni, ne): for entities of type
t, dimension d, number of indices per facet ni, and number of entities ne, permutes
(converts from MOAB to application-specified order) or reverse-permutes (converts to
MOAB order from application-specified order) in-place the indices in ilist.

The data in ilist can be either canonical number index lists or application-dependent entity
handles. For the latter case, overloaded versions of the permuteThis and revPermuteThis
functions are available for integer, unsigned integer, long integer, and void* data.

It can be challenging to track down the numbering systems used in various finite-element codes,
commercial or otherwise, and even more challenging to find differences between these systems.
For reference, we describe the numbering systems used in several well-known codes, including
PATRAN, in Appendix B of this paper.

4. COMPLEXITY AND EFFICIENCY

For practical use, translation of numbering must be efficient in terms of both memory and run-
time. The two main data arrays, for downward and upward connectivity numbering, require
about 10 kB and 60 kB, respectively. This amount of memory is almost negligible in
comparison to overall system memory today.

Applications will be most sensitive to run-time in cases where the entire fine-grained data set is
being processed. This is most likely to be the case when element numbering is permuted from
one system to another. For this reason, the permutation functionality discussed in Section 3.2
uses index arrays for both reverse and forward permutations. The run-time complexity of
permuting based on these arrays is therefore linear in the size of the connectivity array being
permuted. Permutation requires almost no extra memory, since connectivity is permuted one
element at a time, then copied back to the original connectivity array passed in by the
application.

The next most likely place where run-time might be an issue is in the translations between facet
connectivity and index, discussed in Section 3.2. In this case, for each entity/facet pair, MBCN
find the index of each facet vertex in the entity’s connectivity array, then compares that facet
index array against the connectivity arrays of sub facets of the facet dimension. Although
involving traversal of several arrays in this process, these arrays are all relatively short and are
bounded by either the maximum number of vertices in an entity (currently 8 in MBCN) or sub
facets bounding an entity (12). Furthermore, this type of operation usually occurs as part of the
input/output process and therefore is amortized over the run-time for the whole application. For
example, a one-million element hexahedral mesh was generated for a standard brick shape, with
six “sideset” boundary condition sets. This mesh was written from MOAB’s representation,
based on elements and facets, to an Exodus file, based on element and facet numbers. Finding
the facet indices required only 1.6% of the overall time to write this file. We conclude that run-
times of this sort will not be significant for most applications.

11

5. SUMMARY

This paper describes a system for numbering vertices and facets of elements in a finite-element
mesh. The system corresponds closely to the PATRAN and EXODUSII numbering systems
where possible, but it also includes elements not supported in those systems. Numbering for both
linear and quadratic elements is described, including cases where only some lower dimensions
are resolved with nodes (e.g., a 10-node tetrahedron containing refined edges but not faces).
Functions are also described for evaluating canonical numbering data. These functions are used
to accomplish tasks often found in mesh applications. MBCN provides these functions for all
supported element types, a feature that can simplify enhancements to applications to support new
element types.

The numbering system and evaluation functions described in this paper are implemented in the
MBCN class, which has been released as open source software. Functions are also provided that
can be called directly from the Fortran and C languages. MBCN uses static arrays to store
numbering information and adds less than 100 kB to an application. In most cases, run-time
complexity is linear or less in the number of vertices in a connectivity array.

This paper also relates our numbering system with that of other common systems, including
PATRAN, ExodusII, and Ansys. Functions provided by MBCN facilitate translation between the
various numbering systems. The run-time complexity of permutations is minimized by
permuting in-place for single elements using small static arrays. By providing both code and
translations between various numbering systems, MBCN facilitates interoperability between
various mesh-related applications. Interoperability has been shown to increase the pace of
development of scientific computing applications.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy’s Scientific Discovery through
Advanced Computing program under Contract DE-AC02-06CH11357. Argonne National
Laboratory is managed by UChicago, Argonne LLC under Contract DE-AC02-06CH11357.

APPENDIX A. API FOR QUERYING CANONICAL ORDERING

Given a canonical ordering specification like the one in this paper, an Application Programming
Interface (API) is also useful for defining functional interfaces used to access numbering
information. Functions and enumerated types for returning various numbering information are
described briefly in this appendix; full function definitions and reference information can be
found in the MBCN header file. For convenience, the API description is grouped into several
sections:

• Enumerated types and miscellaneous functions
• Basic data functions
• Evaluation functions
• Functions operating on application data
• Higher-order node functions

12

A1. ENUMERATED TYPES AND MISCELLANEOUS FUNCTIONS

MBCN references entity types using values of an enumerated type. A few functions also get or
set variables not specific to any entity type. These types and functions are summarized in .

A2. BASIC DATA FUNCTIONS

Basic data functions return numbering information that depends only on the entity type and any
sub-entity type or index for which numbering information is being requested. This data can be
considered statically defined and is not likely to change in subsequent versions. The basic data
functions are summarized in .

A3. DATA EVALUATION FUNCTIONS

Data evaluation functions provide information derived from the static canonical numbering data,
but not necessarily stored in static tables. These functions may or may not be as efficient as those
in the previous section.

A4. FUNCTIONS OPERATING ON APPLICATION DATA

Canonical numbering functions are often used to find numbering information on specific
application data. For example, given the connectivity array for an element and a vertex number,
find the index of that vertex in the element. The functions in this section are based on two
important assumptions:

• The data in the connectivity array are sizeof(void*) on the computer being used.
• A compare operator is defined that determines whether two index values represent the

same index.
If these assumptions are correct, applications can call these functions, passing in connectivity
arrays as-is. Casting is used inside the implementation to avoid dereferencing void pointers.
summarizes the MBCN functions that operate on application data.

A5. FUNCTIONS INVOLVING HIGHER-ORDER NODES

The indices of higher-order nodes in an element depend dynamically on the other higher-order
nodes defined for the element. If one stipulates that if any subentities of a given dimension are
resolved with high-order nodes, then all must be, indices for higher-order nodes can be computed
with little additional information. The functions summarized in provide indexing information for
entities with higher-order nodes.

APPENDIX B. MAPPINGS FROM OTHER SYSTEMS

Various well-known canonical numbering systems are used in the community, for example,
PATRAN, ExodusII, and STEP. To our knowledge this is the first attempt to publicly document
and compare these numbering systems. In general, each numbering system is the result of having

13

to support legacy applications as well as achieving some sort of consistency; often these goals
are competing. In most cases there is no clear “best” way to construct this numbering. In such
situations, it is most useful to simply understand how each numbering system differs from the
others.

The point of comparison used in this section is the numbering system defined in Section 2.

B1. EXODUSII [SCH92]:

TET:

• Face-resolving higher order nodes appear in the connectivity list in the order f1, f2, f4, f3,
after any edge-resolving nodes and before a tet-resolving node.

HEX:

• In the 27-node hex (i.e. a hex with all dimensions resolved with higher-order nodes), the
hex-resolving node appears before the face-resolving nodes. That is, nodes appear in the
order (v1-v8, e1-e12, h1, f1-f6).

B2. PATRAN [PAT08]:

TET:

• Edge numbering begins with base edges in order consistent with vertices, then proceeds
to side edges in order consistent with edge ordering around base face.

• Face numbering begins with base face, then proceeds to side faces in order consistent
with base edges.

• Base face has inward normal; others have outward normal.
• Higher-order node numbering is consistent with edge numbering, but higher-order node

indices for face-resolving nodes are ordered f4, f2, f3, f1.

PRISM:

• In PATRAN these are named “WEDGE.”
• Edge numbering begins with base edges, proceeding to top and then side edges.
• Face ordering is consistent with edge ordering.
• Base face has inward normal; others have outward normal.
• Higher-order node numbering is not consistent with edge ordering.

PYRAMID

• PATRAN has no pyramid element.

14

HEX:

• Face ordering begins with base and top faces, then lists side faces in consecutive order
around the first face.

• Edge ordering is consistent with face ordering.
• Base face has inward normal; others have outward normal.
• Higher-order node ordering is not consistent with edge numbering.

B3. STEP 10303-104

TET

• Face numbering begins with the base face, proceeding to side faces in order consistent
with edge ordering around the base face.

• Higher-order node numbering is inconsistent with edge ordering, beginning with side
edges and proceeding to the base edges.

PRISM

• STEP 10303-104 refers to this element as a “wedge.”
• Edge numbering begins with base edges, followed by the top edges, followed by side

edges; base, top, and side edge ordering is consistent with vertex numbering on base face.
• Face ordering is consistent with edge ordering.
• Higher-order node numbering begins with side edge mid-nodes, then base and top edge

mid-nodes; it is inconsistent with edge and face ordering.

PYRAMID

• Face ordering begins with the base face with outward normal, then proceeds to side faces
in order consistent with edge ordering on the base face.

• Higher-order node numbering begins with side edges, then proceeds to the base edges; it
is inconsistent with edge and face numbering.

HEX

• Edge ordering begins with the base edges, then proceeds to top and then side edges.
• Face ordering begins with base and top faces, then proceeds to side faces, in order to be

consistent with edge ordering around the base face.
• Higher-order node numbering begins with side edges, then proceeds to base and top

edges, then to faces in similar order; it is inconsistent with edge and face numbering.

15

B4. OTHER FORMATS

This section contains general comments about the compatibilities or incompatibilities of other
numbering systems used in the finite-element community.

Fluent/Gambit

• Vertex and face numberings on two-dimensional elements follow a left-hand rule.
• Vertex and edge numbering is consistent with PATRAN for some 3D elements, not for

others (generally, hex elements have unique numbering)
• Higher-order nodes are interleaved with corner nodes for higher-order elements, rather

than appearing after all corner nodes.

Ansys

• Vertex and apparent edge numberings are similar to those in PATRAN.
• Face numbering generally goes bottom-side-top, which is different from most others.
• Higher-order node numbering follows edge and face numbering.
• PRISM and PYRAMID elements seem to be supported only using degenerate hex

elements.

Abaqus

• Vertex, apparent edge and face numberings similar to those in PATRAN.
• Higher-order node numbering follows edge/face numbering.

APPENDIX C. MBCN IMPLEMENTATION

MBCN can be divided into two parts: fundamental canonical numbering data for the supported
element types, and functions for evaluating those data to provide higher-level capability (like that
described in the previous section). The challenge in implementing a canonical ordering system is
not in the basic implementation; rather, it is in doing the implementation in a way that reduces
the possibility of consistency errors and simplifies adding new element types. The MBCN
implementation meets both these goals, possibly at the expense of code clarity. Therefore, we
describe the implementation of the fundamental canonical ordering data here (implementation of
the higher-level functions is relatively straightforward and is not described here).

C1. FUNDAMENTAL DATA

Canonical numbering can be thought of as the relation between the vertices describing a D-
dimensional element and those forming its d-dimensional bounding facets, 0 < d < D. Working
in that paradigm, we store canonical numbering data in an array mConnectivityMap[t][j]
of ConnMap structures, where4 t = MBVERTEX..MBMAXTYPE-1, and j = 0..2 (j=0 for edge
facets, j=1 for face facets, and j=2 for the element itself). The following data are stored in the
mConnectivityMap[t][j] corresponding to element type t and facet dimension j+1:

• int topo_dimension: d, the topological dimension of element type t

16

• int num_sub_elements: number of facets of dimension j+1 (j=0..d-2) or unity
(j=d-1)

• int num_nodes_per_sub_element[i]: number of vertices contained in facet i
of dimension j+1 (j=0..d-2) or number of corner vertices in elements of type t (j=d-1,
i=0)

• MBEntityType target_type[i]: element type of facet i (j=0..d-2) or element
type t (j=d-1, i=0)

• int conn[i][]: connectivity of facet i, in terms of vertex indices in element type t
(j=0..d-2), or indices 0..num_nodes_per_sub_element[0] (j=d-1)

Note that facet information is not needed for facets of dimension zero (i.e., vertices) and that the
ConnMap structures for a given type t, mConnectivityMap[t][], have a small amount of
redundant data, for convenience.

Using the data stored in mConnectivityMap as described above, one can read many of the
basic canonical numbering data right from the table, for example, the following.

� Topological dimension of elements of type
t = mConnectivityMap[t][0].topo_dimension

� Number of (corner) vertices for element type t =
mConnectivityMap[t][mConnectivityMap[t][0]]..
num_sub_elements

� Number of facets of dimension d for element type t =
mConnectivityMap[t][d-1].num_sub_elements

These functions and others are implemented as inline functions that simply reference the
appropriate items in mConnectivityMap.

C2. UPWARD ADJACENCY SUPPORT

As described in the preceding section, the AdjacentSides function can be used to find facet
indices adjacent to a given set of facets. This function can also perform both intersections and
unions of facet indices for a given set of source facets. To support this function, MBCN also
defines a parallel table of adjacency information in the variable mUpConnMap. Whereas
mConnectivityMap[t][j] stores data pertaining to facets of lower dimension j,
mUpConnMap[t][j][k] stores adjacency data pertaining to source and target dimensions j
and k, respectively, j < k. The facet connectivity data stored in
mConnectivityMap[t][j].conn[j][] is stored in canonical numbering order of the
facet, while the adjacent facet indices stored in mUpConnMap are sorted by index value; this
approach facilitates intersection and union operations supported by the AdjacentSides function.

For a more detailed discussion of this issue, see [TAU04].

17

C3. EXTENDING MBCN

Extending MBCN would be accomplished by adding data for a new element type to the
mConnectivityMap and mUpConnMap static arrays (along with the new element type
itself). Since the other functions in MBCN are implemented based on those arrays, they would
account for the new element type automatically.

REFERENCES

[ANS98] Ansys Elements Reference, 10th ed., ANSYS Release 5.5, ANSYS, Inc, September
1998.

[BAL04] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang,
PETSc Users Manual, ANL-95/11 - Revision 2.1.5, Argonne National Laboratory,
2004.

[BEA97] M. W. Beall and M. S. Shephard, “A general topology-based mesh data structure,” Int.
J. Numer. Meth. Engr. 1997; 40(9): 1573-1596.

 [HUG87] Thomas J. R. Hughes, “The Finite Element Method, Linear Static and Dynamic Finite
Element Analysis,” Prentice-Hall, 1987.

[ITA08] The Terascale Simulation Tools and Technology (TSTT) Center, http://www.tstt-
scidac.org/.

[MET08] METIS Family of Multilevel Partitioning Algorithms, http://www-
users.cs.umn.edu/~karypis/metis/index.html.

[MOA08] MOAB – A Mesh-Oriented datABase,

http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB, 2008.

[PAT08] MSC.Patran Reference Manual, Part 4: Finite Element Modeling, MSC.Software,
www.mscsoftware.com, 2008.

[SCH92] Larry A. Schoof, Victor R. Yarberry, “EXODUS II: A Finite Element Data Model,”
SAND92-2137, Sandia National Laboratories, Albuquerque, NM, September 1994,
http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf.

 [TAU04] Timothy J. Tautges, Ray E. Meyers, Karl Merkley, Clint Stimpson, Corey Ernst,
“MOAB: A Mesh-Oriented Data Base,” Sandia National Laboratories Report
SAND2004-1592, Sandia National Laboratories, Albuquerque, NM, 2004.

18

Table 1: Enumerated types and miscellaneous functions

Type/Function Name Description

MBEntityType Enumerated type whose values are types recognized by MBCN.
operator++ Pre- and post-fix operators.
GetBasis Get the basis of the numbering system.
SetBasis Set the basis of the numbering system.

Table 2: Basic data functions

Function Name Description

EntityTypeName Human-readable name of an entity type.
Dimension Topological dimension of entity type.
VerticesPerEntity Return the number of (corner) vertices contained in the specified type.
NumSubEntities Return the number of subentities of the specified dimension bounding

the entity.
SubEntityType Return the type of a particular subentity.
SubEntityConn Return the connectivity of the specified subentity.

Table 3: Data evaluation functions

Function Name Description

AdjacentSides For a specified set of facets of given dimension, return the intersection
or union of all facets of specified target dimension adjacent to those
facets.

Table 4: Functions operating on application data

Function Name Description

SideNumber Return the facet index represented in the input subentity connectivity
in the input parent entity connectivity array.

ConnectivityMatch Given two connectivity arrays, determine whether or not they represent
the same entity.

19

Table 5: Functions involving higher-order nodes

Function Name Description

HasMidEdgeNodes Return whether an entity type has mid-edge nodes for the specified
total number of nodes.

HasMidFaceNodes Return whether an entity type has mid-face nodes for the specified
total number of nodes.

HasMidRegionNodes Return whether an entity type has mid-volume nodes for the specified
total number of nodes.

HasMidNodes Return whether an entity type has mid-nodes on edges, faces, and
regions for the specified total number of nodes.

HONodeIndex For an entity with specified type and number of vertices (corner +
higher-order) and a specified subfacet dimension and index, return the
expected index of the higher-order node resolving that entity.

HONodeParent For an entity with specified type and vertex array (corner + higher-
order) and a specified node, return the dimension and index of the
parent subentity resolved by that node.

